Blood Donation and Iron Reserves: Current Issues and Advances

Roger Y. Dodd, PhD
Adjunct Associate Professor
Johns Hopkins University, Baltimore, USA

SANBTC, Sun City, S.A.
August 29th, 2017
Committee members agreed that iron depletion in blood donors is a concern.

Discussed testing for iron status in the donor setting.

Discussed alternative strategies to mitigate iron depletion:
- Iron supplementation, dietary recommendations
- Changing Hb/hct acceptance standards
- Modification of interdonation interval
Underlying issues

- Donation (including apheresis) removes iron
- Iron is not readily replaced
- Low hemoglobin (Hb) is a late effect of iron depletion
- Hb cutoffs and interdonation intervals are somewhat arbitrary
- Impacts of iron deficiency are not well-documented
- Sex, age, and BMI all impact the effects of donation
Iron loss following blood donation

- Iron loss following blood donation ~ 200-250mg
- Premenopausal women have lower iron stores than men
- Frequent blood donations deplete iron stores
- Replacement of lost iron is dependent on exogenous sources
Definitions of anemia

<table>
<thead>
<tr>
<th>Group</th>
<th>Hemoglobin levels below which 5% of the normal subjects in the population will be found (g/dL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>White men 20 -59</td>
<td>13.7</td>
</tr>
<tr>
<td>Black men 20-59</td>
<td>12.9</td>
</tr>
<tr>
<td>White women 20-49</td>
<td>12.2</td>
</tr>
<tr>
<td>Black women 20-49</td>
<td>11.5</td>
</tr>
</tbody>
</table>

NHANES III and Scripts –Kaiser databases

Blood. 2006 Mar 1;107(5):1747-50
NHANES II data: Hb concentrations in men 18 to 44 years of age. (◆) Caucasian men; (░) African American men.

Hemoglobin distribution in women

NHANES II data: Hb concentrations in women 18 to 44 years of age. (◆) Caucasian women; (■) African American women.

International donor Hb levels (g/dL)

<table>
<thead>
<tr>
<th>Organization</th>
<th>Hb-male</th>
<th>Hb-female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Council of Europe</td>
<td>13.5</td>
<td>12.5</td>
</tr>
<tr>
<td>Australia</td>
<td>13.0</td>
<td>12.0</td>
</tr>
<tr>
<td>UK</td>
<td>13.5</td>
<td>12.5</td>
</tr>
<tr>
<td>Health Canada</td>
<td>12.5</td>
<td>Both Sexes</td>
</tr>
<tr>
<td>FDA Current</td>
<td>13.0</td>
<td>12.5*</td>
</tr>
</tbody>
</table>

* Female Hb may be changed to 12.0 with FDA-approved procedures
International standards

<table>
<thead>
<tr>
<th>Country</th>
<th>Minimum hemoglobin</th>
<th>Interdonation interval or frequency per year</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States</td>
<td>12.5 for women</td>
<td>56 days</td>
</tr>
<tr>
<td></td>
<td>13.0 for men</td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td>12.5</td>
<td>56 days</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>12.5 for women</td>
<td>112 days</td>
</tr>
<tr>
<td></td>
<td>13.5 for men</td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td>12.0 for women</td>
<td>84 days</td>
</tr>
<tr>
<td></td>
<td>13.0 for men</td>
<td></td>
</tr>
<tr>
<td>Netherlands</td>
<td>12.5 for women</td>
<td>Women: 18 weeks, 3x/year</td>
</tr>
<tr>
<td></td>
<td>13.5 for men</td>
<td>Men: 10 – 11 weeks, 5x/year</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>11.5 for women</td>
<td>Women: 3x/year</td>
</tr>
<tr>
<td></td>
<td>13.0 for men</td>
<td>Men: 4x/year</td>
</tr>
</tbody>
</table>
Studies of iron stores and donation frequency

- High prevalence of iron deficiency in frequent blood donors
 - REDS II donor iron study
- Repeat donations lead to decreased serum ferritin in male and female donors
- Clear correlation of iron deficiency with frequency of donation
- Depletion of iron stores occurs gradually with increased frequency of blood donation
Effect of donation frequency on hemoglobin and iron status

Hb (g/dL) for both genders at four donations without iron supplement (red = women, blue = men).

Serum ferritin (μg/L) for both genders at four donations without iron supplement (red = women, blue = men).
REDS-II Donor Iron Status Evaluation - RISE

- 4 cohorts of donors – First-time/reactivated and frequent donors (males and females)
- 2425 donors total – characterized and followed for up to 2 years
- At enrollment their ferritin, soluble transferrin receptor (sTfR) and hemoglobin were measured
- Two measures of iron deficiency: **AIS** / Absent iron stores [ferritin<12 ng/mL] and **IDE** / iron-deficient erythropoiesis [log(sTfR/ferritin)≥ 2.07]

Fig. 1. Effect of 12-month whole blood or RBC donation frequency on venous Hb by males (▲) and pre- (◆, age < 50 years) or postmenopausal (■, age ≥ 50 years) females.

Cable et al, Transfusion 2011;52: 511-522
Fig. 2. Effect of 12-month whole blood or RBC donation frequency on the geometric mean of plasma ferritin by males (▲) and pre- (◆, age < 50 years) or (■, age ≥ 50 years) postmenopausal females.

Cable et al, Transfusion 2011;52: 511-522
TABLE 1. Medians (2.5%-97.5% range) for venous Hb, ferritin, sTfR, and log(sTfR/ferritin) and proportion with AIS and IDE by enrollment cohort

<table>
<thead>
<tr>
<th>Cohort</th>
<th>Hb (g/dL)*</th>
<th>Ferritin (ng/mL)</th>
<th>sTfR (mg/L)</th>
<th>Log(sTfR/ferritin)</th>
<th>AIS (%)</th>
<th>IDE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Females</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FT or RA</td>
<td>13.3 (11.5-15.2)</td>
<td>37 (9-175)</td>
<td>2.7 (1.7-4.8)</td>
<td>1.8 (1.1-2.6)</td>
<td>6.4</td>
<td>24.7</td>
</tr>
<tr>
<td>Frequent</td>
<td>13.2 (11.4-15.2)</td>
<td>19 (5-68)</td>
<td>3.1 (1.8-6.6)</td>
<td>2.2 (1.5-3.0)</td>
<td>27.1</td>
<td>66.1</td>
</tr>
<tr>
<td>Males</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FT or RA</td>
<td>15.1 (12.8-17.4)</td>
<td>108 (29-430)</td>
<td>2.7 (1.6-4.4)</td>
<td>1.4 (0.8-2.1)</td>
<td>0</td>
<td>2.5</td>
</tr>
<tr>
<td>Frequent</td>
<td>14.5 (12.0-16.6)</td>
<td>25 (6-117)</td>
<td>3.1 (1.8-8.0)</td>
<td>2.1 (1.3-3.1)</td>
<td>16.4</td>
<td>48.7</td>
</tr>
</tbody>
</table>

* Post vHb samples were converted to predonation values using the formula Pre vHb(g/dL) = Post vHb + 0.8423 – (0.002035 × weight [lb]).
Proportion with AIS and IDE at Enrollment

<table>
<thead>
<tr>
<th></th>
<th>AIS (%)</th>
<th>IDE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Females</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FT or RA</td>
<td>6.4</td>
<td>24.7</td>
</tr>
<tr>
<td>Frequent</td>
<td>27.1</td>
<td>66.1</td>
</tr>
<tr>
<td>Males</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FT or RA</td>
<td>0</td>
<td>2.5</td>
</tr>
<tr>
<td>Frequent</td>
<td>16.4</td>
<td>48.7</td>
</tr>
</tbody>
</table>

- Donation intensity in the past two years had the biggest association with AIS and IDE.
- Females, younger and/or menstruating donors and those with lower weight were also more likely to have either AIS and/or IDE.
- Marginally significant variables included being a non-smoker, previous pregnancy and not taking iron.

Iron Replacement Study at the NIH Clinical Center

- Hgb deferred donors and iron deficient control donors offered iron replacement
- Donors given iron had “steady and consistent improvement and normalization of iron-related laboratory parameters” even when they continued to donate
- Iron was well tolerated with 68% compliance and 21% adverse GI effects

- Bryant et al. (2012) Transfusion, vol. 52; 1566-75.
Australian Red Cross Study

- Female returning whole blood donors aged 18-45 were randomized to receive an 8 week post-donation course of carbonyl iron (45 mg)
- At week 12, the proportion of iron deficient donors was 51.9% in the iron group and 80.5% in the placebo group, and mean Hgb was significantly higher in the iron group

HEIRS Study

Study population: 215 eligible donors, 18-79yo, no donation for ≥ 4 months

| Table 1. Baseline Characteristics of Study Participants by Ferritin Level |
|--|------------------|------------------|------------------|------------------|
| | Low Ferritin (≤26 ng/mL) | Higher Ferritin (>26 ng/mL) |
| | Iron (n = 51) | No Iron (n = 50) | Iron (n = 60) | No Iron (n = 54) |
| Women, No. (%) | 33 (64.7) | 31 (62.0) | 38 (63.3) | 34 (63.0) |
| Age ≥60 y, No. (%) | 12 (23.5) | 11 (22.0) | 17 (28.3) | 12 (22.2) |
| Age, mean (SD), y | 47.5 (15.5) | 45.9 (15.7) | 49.3 (14.6) | 48.1 (14.6) |
| Weight, mean (SD), kg | 75.9 (16.4) | 76.8 (15.8) | 81.5 (16.4) | 77.9 (16.2) |
| Hemoglobin, mean (SD), g/dL | 13.2 (1.0) | 13.7 (1.3) | 14.1 (1.0) | 14.3 (1.2) |
| Ferritin, mean (SD), ng/mL | 14.9 (5.8) | 15.2 (6.0) | 54.0 (24.3) | 58.9 (32.9) |
| sTfR, mean (SD), mg/L | 4.0 (1.33) | 3.9 (1.19) | 3.1 (0.65) | 3.1 (0.62) |
| Estimated blood volume, mean (SD), L | 4.59 (0.8) | 4.66 (0.91) | 4.79 (0.84) | 4.64 (0.84) |

Kiss et al, JAMA 2015;313:575-583
A Hemoglobin level over time since blood donation

Kiss et al, JAMA 2015;313:575-583
B Hemoglobin level as percentage of baseline

![Graph showing hemoglobin level over time for different conditions]

- **Higher ferritin (>26 ng/mL)**: Received Iron supplements, No Iron (indicated by different symbols
- **Low ferritin (≤26 ng/mL)**: Received Iron supplements, No Iron

Time since donation, d

Kiss et al, JAMA 2015;313:575-583
<table>
<thead>
<tr>
<th>Ferritin Group (ng/mL)</th>
<th>No. of Participants</th>
<th>Time to 80% Hemoglobin Recovery, Mean (IQR), da</th>
<th>(95% CI)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Women</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Low (≤26)</td>
<td>30</td>
<td>36 (33-39)</td>
</tr>
<tr>
<td>Iron</td>
<td>Higher (>26)</td>
<td>29</td>
<td>32 (29-34)</td>
</tr>
<tr>
<td>No iron</td>
<td>Low (≤26)</td>
<td>30</td>
<td>153 (126->168)</td>
</tr>
<tr>
<td>No iron</td>
<td>Higher (>26)</td>
<td>29</td>
<td>92 (76-130)</td>
</tr>
<tr>
<td>Men</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Low (≤26)</td>
<td>17</td>
<td>25 (23-28)</td>
</tr>
<tr>
<td>Iron</td>
<td>Higher (>26)</td>
<td>20</td>
<td>30 (27-35)</td>
</tr>
<tr>
<td>No iron</td>
<td>Low (≤26)</td>
<td>18</td>
<td>>168 (102->168)</td>
</tr>
<tr>
<td>No iron</td>
<td>Higher (>26)</td>
<td>20</td>
<td>68 (50-95)</td>
</tr>
</tbody>
</table>
Study procedures; Male apheresis donors

• 3/01/2016 start in 3 regions, rolling start across 5 additional regions over 2.5 months
Retention tube sent to Scientific Support Office (SSO) for ferritin testing for male plateletpheresis donors with Hb b/w 12.5 - 13.4 g/d

• Ferritin results and letter preparation managed by SSO staff

• Donor management:
 • donors with ferritin ≤ 26 ng/mL sent “low ferritin” letter and removed from TR list for 4 weeks
 • existing appointments not canceled
 • “low-ferritin” letter sent initially and at minimum of 90-day interval subsequently

(Courtesy Bryan Spencer)
Study Procedures: Male apheresis donors

- 3/01/2016 start in 3 regions, rolling start across 5 additional regions over 2.5 months
- Retention tube sent to Scientific Support Office (SSO) for ferritin testing for male plateletpheresis donors with Hb 12.5 - 13.4 g/d
- Ferritin results and letter preparation managed by SSO staff
- Donor management:
 - donors with ferritin ≤ 26 ng/mL sent “low ferritin” letter and removed from TR list for 4 weeks
 - existing appointments not canceled
 - “low-ferritin” letter sent initially and at minimum of 90-day interval subsequently

(Courtesy Bryan Spencer)
Correlates of low iron stores -- I

(Courtesy Bryan Spencer)

<table>
<thead>
<tr>
<th>SDP donation frequency at enrollment (prior year)</th>
<th>N</th>
<th>Ferritin % < 12</th>
<th>Ferritin % ≤ 26</th>
<th>OR<sub>Ferr≤26</sub></th>
<th>Adjusted OR<sub>Ferr≤26</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 5</td>
<td>1379</td>
<td>19%</td>
<td>41%</td>
<td>0.68 (0.52, 0.89)</td>
<td>0.62 (0.52, 0.74)</td>
</tr>
<tr>
<td>6 to 10</td>
<td>909</td>
<td>18%</td>
<td>50%</td>
<td>Ref</td>
<td>Ref</td>
</tr>
<tr>
<td>11 to 15</td>
<td>790</td>
<td>25%</td>
<td>63%</td>
<td>1.71 (1.25, 2.35)</td>
<td>1.76 (1.44, 2.15)</td>
</tr>
<tr>
<td>16 to 24</td>
<td>976</td>
<td>28%</td>
<td>70%</td>
<td>2.31 (1.70, 3.15)</td>
<td>2.63 (2.17, 3.20)</td>
</tr>
</tbody>
</table>

Ferritin %

<table>
<thead>
<tr>
<th>Hb (g/dL)</th>
<th>N</th>
<th>Ferritin % < 12</th>
<th>Ferritin % ≤ 26</th>
<th>OR<sub>Ferr≤26</sub></th>
<th>Adjusted OR<sub>Ferr≤26</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5-12.9</td>
<td>538</td>
<td>29%</td>
<td>62%</td>
<td>1.38 (1.06, 1.80)</td>
<td>1.35 (1.10-1.65)</td>
</tr>
<tr>
<td>13.0-13.4</td>
<td>3516</td>
<td>21%</td>
<td>53%</td>
<td>Ref</td>
<td>Ref</td>
</tr>
</tbody>
</table>
Summary observations

- Blood donation impacts iron stores
- Frequent donation leads to IDE or AIS
- Recovery time from a single donation is greater than allowable IDIs
- Modest iron replacement will accelerate recovery
- Specific groups are at greater risk
 - Frequent donation (WB and pheresis)
 - Young (school-age) donors
 - Female donors of child-bearing age
 - Donors with low but acceptable Hb levels
 - Male donors may have prolonged recovery of iron levels
Effects associated with iron deficiency

- Cognitive dysfunction
- Fatigue
- Pregnancy-related complications
- Decreased exercise endurance
- Pica
- Restless-leg syndrome
- Anemia

(Note: Some blood-bankers point out that these outcomes are not routinely observed among donors)
AABB Association Bulletin 17-02

- Blood establishments should develop policies to limit or help prevent iron deficiency in their donors
- Educational materials
- Interventions for those at-risk
- Monitor impact of measures

Educational materials

- Alert donors to risk of iron deficiency
- Relevance to those at higher risk
- Benefits of iron replacement post-donation
 - Type of Fe, dosage, period of supplementation
- Note problems re GI blood loss, hemochromatosis etc.
- Consult health-care provider re Fe and other medications

- Even specifically directed educational material has had little impact, however
At-risk groups considered for interventions

- Young donors (*at minimum, 16-18*)
- Premenopausal females
- Frequent donors
 - Male: 3 or more donations in 12 months
 - Female: 2 or more donations in 12 months
- Donors with Hb near level for eligibility eg:
 - Males: 13.0-13.5 g/dL
 - Females: 12.5-13.0 g/dL
Recommended interventions

- Donor iron supplementation
 - At least 18mg elemental iron daily for 60 days
- Lengthening IDI and/or decreasing donations per year
 - 56-day interval leads to negative iron balance
 - If no other intervention, no more than 2 donations/year
 - (Young donors 1/year)
 - Will reduce blood availability, consider additional interventions
- Donor ferritin testing to support other actions
 - All donors or subgroups
 - Advise those with low values on Fe supplementation and/or donation frequency
 - Collect at time of donation: actions relate to future donation (effective POC tests not available)
Some Disadvantages of Giving Iron to Donors

• Cost of supplements
• Time to manage and monitor such a program
• Possible side effects of iron supplementation
• Donor willingness to take supplements
• Medical implications of masking conditions such as cancer or exacerbating hemochromatosis
What is happening?

• Limited actions implemented or under consideration
• More attention to Hb deferrals
 • Education
 • Extended deferral
 • Ferritin
• Management of at-risk groups
 • Young donors: ferritin, extended IDI (particularly for Hb deferral)
 • Frequent donors
 • High-frequency donors
Summary

• Recognition that iron deficiency is common among blood donors
• Hb deferral reflects a late response to iron deficiency
• Iron recovery takes more time than frequently-used interdonation intervals
• Iron replacement accelerates recovery
• New recommendations and regulatory requirements
• Ferritin testing may be best approach to management
• However, test results only obtained post-donation
• We are responsible for donor health and safety
Acknowledgements

• I am grateful to the following for assistance and for sharing slides
 • Susan Stramer
 • Bryan Spencer
 • Whitney Steele